．
 II
 男品 ± 2相

Specialist
 Mathematies

2007

Trial Examination I

Instructions

Answer all questions. Do not use calculators.
A decimal approximation will not be accepted if an exact answer is required to a question. In questions where more than one mark is available, appropriate working must be shown. Unless otherwise indicated, the diagrams in this exam are not drawn to scale.
Take the acceleration due to gravity to have magnitude $g \mathrm{~ms}^{-2}$, where $g=9.8$.
Question 1 Given $\frac{x^{2}}{3}-\frac{y^{2}}{2}=1, x, y \in R$,
a. show that $\frac{d y}{d x}=\frac{2 x}{3 y}$.
b. Find the coordinates of a point on the curve where the gradient is -1 .

Question 2 A 2-kg particle has an acceleration (in ms^{-2}) $\boldsymbol{a}=12 \boldsymbol{i}-5 \boldsymbol{j}$ for $t \geq 0$.
a. Find the exact magnitude and direction of the resultant force on the particle.
b. Find the displacement of the particle at $t=2 \mathrm{~s}$ if it is initially at rest.

Question 3 The position of a particle at time $t \geq 0$ is given by $\boldsymbol{r}(t)=2 t \boldsymbol{i}-(5 t+1) \boldsymbol{j}+2 \boldsymbol{k}$.
a. Show that the particle moves in a straight line.
b. Find the speed of the particle.
$2+1=3$ marks
Question 4 Find $y=f(x)$ such that $x \frac{d y}{d x}-\log _{e}(2 x)=0$ and $f\left(\frac{1}{2}\right)=0$.

Question 5 A $5-\mathrm{kg}$ load is suspended by three cords $A C, B C$ and $C D$ of negligible mass.

a. Find the tension in cord $C D$.
b. Hence find the tension in cord $B C$.

Question 6 Consider the three points $P(-1,0,1), Q(1,-2,2)$ and $R(2,1,0)$.
a. Find vector $\overrightarrow{P Q}$ in terms of $\boldsymbol{i}, \boldsymbol{j}$ and \boldsymbol{k}.
b. Find the shortest distance from point R to the line through points P and Q.

$$
1+3=4 \text { marks }
$$

Question 7 Given $f(x)=\frac{10 \sqrt{3}}{x^{2}-4 x+7}$.
a. Show that $f(x)$ can be rewritten as $\frac{10 \sqrt{3}}{3+(x-2)^{2}}$.
b. Sketch the graph of $f(x)$. Label the axis intercept(s), asymptote(s) and turning point(s) in exact form.
c. Hence find the area bounded by $y=f(x), x=-1, x=3$ and the x-axis.

$$
1+3+3=7 \text { marks }
$$

Question 8

a. Factorise $x^{2}+i 2 \sqrt{3} x-4$. Show working.
b. Find the square roots of $1-i \sqrt{3}$ and $-1-i \sqrt{3}$.
c. Hence factorise $x^{4}+i 2 \sqrt{3} x^{2}-4$.

$$
2+3+2=7 \text { marks }
$$

Question 9 The velocity of a particle moving in a straight line is given by $v(t)=\frac{5(1-2 t)}{1+2 t}, t \geq 0$.
a. Find the time when the particle comes to a stop momentarily.
b. Find the exact total distance traveled by the particle at $t=1$.

End of Exam 1

